Sunday, 30 April 2017

Three maps of Namibia...

Two colleagues, Dr Mark Kelson and Dr David Gillipse, and I are going to Namibia as part of Project Phoenix. We are planning three days of R training. The materials are being developed and shared on Github as an open source teaching and learning resource.

Before I travel, I'm trying to learn a little more about where I'm going. As a first step, I've been drawing some maps of Namibia. Here are some of the maps:

Colourful map made by library(maps) - Map 1 below.


Map of regions of Namibia made by library(sp) - map 2 below

Map made with library(ggplot2) - map 3 below
I like using ggplot2 but, of course, there is a lot of personal preference. My next step is to add some data to a map... 


## START SCRIPT

# exploring various ways to draw Namibia in R 
# three ways....

## MAP 1 with library(maps)
library(maps)       # Provides functions that let us plot the maps
library(mapdata)    # Contains the hi-resolution points that mark out the countries.

# https://cran.r-project.org/web/packages/maps/maps.pdf
# gives a nice outline
map('worldHires',
    c('Namibia'))
# add some context by adding more countries
map('worldHires',
    c('Namibia', 'South Africa', 'Botswana', 'Angola', 
      'Zambia', 'Zimbabwe', 'Mozambique'))

# show all of Africa
# map the world but limit by longitude and latitude
map('worldHires', 
    xlim=c(-20,60),  # longitude
    ylim=c(-35,40))  # latitude

# focus on countries in Southern Africa
map('worldHires', 
    xlim=c(-10,50), 
    ylim=c(-35,10)) 

# add colour and a title
map('worldHires', 
    xlim=c(-10,50), 
    ylim=c(-35,10),
    fill = TRUE,
    col = c("red", "palegreen", "lightblue", "orange", "pink"))
title(main = "Simple map of Southern Africa")
## MAP 2 with library(sp) and downloaded GADM data 
# this allows us to plot administrative regions inside Namibia
# https://www.students.ncl.ac.uk/keith.newman/r/maps-in-r-using-gadm
# http://biogeo.ucdavis.edu/data/gadm2.8/rds/NAM_adm1.rds

library(sp)

# download the file 
link <- "http://biogeo.ucdavis.edu/data/gadm2.8/rds/NAM_adm1.rds"
download.file(url=link, destfile="file.rda", mode="wb")
gadmNab <- readRDS("file.rda")  # special read file of format RDA

plot(gadmNab)    
# plot with colour filled in, title and label. 
plot(gadmNab, col = 'lightgrey', border = 'darkgrey')
title(main = "Map of admin regions inside Namibia")
points(17.0658, -22.5609,col=2,pch=18)
text(17, -22, "Windhoek")
## MAP 3 with library(ggplot2)
# the advantage is that we can add layers to our plot
# it gives us control
library(ggplot2)
# use map_data()function to create a data.frame containing the outline of Namibia
nab_map<-map_data("worldHires", region = "Namibia")

# create the object m with the map in it. 
# colour Namibia (grey)
m <- ggplot() +
  geom_polygon(data=nab_map,   # geom_polygon draw shape fill
               aes(x=long,     # longitude
                   y=lat,      # latitude
                   group=group),
               fill="gray88") 
m  # show the object

# modify the object to add a thick black line
m <- m + geom_path(data=nab_map,    # geom_path draw shape outline 
              aes(x=long, y=lat, group=group),
              colour="black",  # colour of line
              lwd = 1.5)       # thickness
m    # show it again


# add the points on the plot telling us where the longitude and latitude of Windhoek
# note the data is coming from a different data.frame to the map
location <- data.frame(c(17), c(-22), c("Windhoek"))
colnames(location) <- c("longitude", "latitude", "location")

# add a point with the location
m <- m +  geom_point(data=location, 
                     aes(x=longitude, y=latitude), 
                     colour="red", size = 5) 
m  # show the object

# add text at the same point
m <- m + geom_text(data = location, 
                   aes(x=longitude, 
                       y=latitude, 
                       label = location))  # label has the text

# change the theme to make the map nicer
m <- m + theme_bw()

# add a title
m + ggtitle("Map of Namibia in ggplot")
## END SCRIPT

# see here for more about colours in R
# http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf



Resources:



No comments:

Post a Comment

Comments and suggestions are welcome.